Bose Einstein Scholarship Test

Aı	n endeavou Mentor				urch Schola Foundatio	
	S	ample (Question	for	Class - 7	
1.	If $x + \frac{1}{x} = 1$ and $p = x^4$ greater than 1, then $p + q =$ (a) 2	$\frac{1}{x^{4000}}$ and q be the (b) 4	ne digit at units place i	n the numbe	$\operatorname{cr} 2^{2^n} + 1$, <i>n</i> being a n (d) None of these	atural number
Ź.	Sum of all the real roots (a) 0	s of the equation $ x - x $	$2 ^2 + x - 2 - 2 = 0$ is			
3.	Find all the values of p root is smaller than 2. (a) $-2 (b) -3 (c) -3 < p$	(b) – 4 for which one root o	f the equation $x^2 - (p)$	$+1$) $x+p^2$	(d) 2 p - 8 = 0 is greater that	an 2 and of the other
4.	(d) $p < 2$ x, y and z are three ang $\log (x \times y \times z) = 3 \log (a) 30^{\circ}, 70^{\circ}, 80^{\circ}$	X+4 log 2, given t	that x , y and z are integrated as	egers?	•)0
5.6.	Distance between Lucki three hours Sharat leav taken to meet after Shar (a) 174 km Labour allocation is a v efficiency is 75%. The premoved one labourer d (Assume that the profit	now and Patna is 300 es at the speed of (x eat starts are integers (b) 60 km ery important process production of a loom ue to which the effic	km. Mayank leaves at + 10) km/h from Luc, how much distance c (c) 150 km s . A particular weavir at 100% efficiency is iency came down to 7 and the looms are wo	a speed of x cknow towar can Mayank m ng section h 10 m/h. Sala 0%. How m rking for 30	km/h from Lucknow tow ds Patna. If x and the cover before they meet (d) 180 km as 20 looms and with five ary of a labourer is Rs 1 uch do I gain or loose de	ve labourers , loom 1, 000 per month. I ue to this action ?
7.8.	The time period of oscillation T for pendulum is given by $T = k\sqrt{\frac{\ell}{g}}$, where is ℓ the length of the pendulum and g is the acceleration due to gravity, 'k' is any constant. If 'k' and 'g' remain unchanged under any condition, what should be the percentage change in ℓ such that the time period T increases by 10%? (a) 10% increase (b) 10% decrease (c) 20% increase (d) 21% increase Let N be a set of real numbers such that p is any real number in the set. There exists two numbers in N whose average is p,					
9.	then (a) N is finite set (b) N is a set containing all real numbers (c) N is a set of all numbers in the interval $(2, 3)$ (d) None of these Consider a circle with unit radius. There are seven adjacent sectors, S_1 , S_2 , S_3 S_7 , in the circle such that their total are is $\frac{1}{8}$ th of the area of the circle. Further, the area of the jth sector is twice that of the $(j-1)$ th sector, for. What is the angle, in radians, subtended by the arc of S_1 at the centre of the circle?					
	(a) $\frac{\pi}{508}$	(b) $\frac{\pi}{2040}$	(c) $\frac{\pi}{1016}$		(d) $\frac{\pi}{1524}$	